翻訳と辞書
Words near each other
・ Kostandin Boshnjaku
・ Kostandin Kristoforidhi
・ Kostandin Ndoni
・ Kostandin Shpataraku
・ Kostandin Çekrezi
・ Kostandovo
・ Kostanecki acylation
・ Kostanj, Kamnik
・ Kostanjek
・ Kostanjevec
・ Kostanjevica
・ Kostanjevica Monastery
・ Kostanjevica na Krasu
・ Kostanjevica na Krki
・ Kostanjevica, Šentrupert
Kostant partition function
・ Kostant polynomial
・ Kostant's convexity theorem
・ Kostantinos Errikos
・ Kostaq Kota
・ Kostarowce
・ Kostars
・ Kostas (film)
・ Kostas (songwriter)
・ Kostas Aidiniou
・ Kostas Andriopoulos
・ Kostas Andritsos
・ Kostas Antoniou
・ Kostas Apostolopoulos
・ Kostas Axelos


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kostant partition function : ウィキペディア英語版
Kostant partition function
In representation theory, a branch of mathematics, the Kostant partition function, introduced by , of a root system \Delta is the number of ways one can represent a vector (weight) as an integral non-negative sum of the positive roots \Delta^+\subset\Delta. Kostant used it to rewrite the Weyl character formula for the multiplicity of a weight of an irreducible representation of a semisimple Lie algebra.
The Kostant partition function can also be defined for Kac–Moody algebras and has similar properties.
==Relation to the Weyl character formula==
The values of Kostant's partition function are given by the coefficients of the power series expansion of
:\frac)}
where the product is over all positive roots. Using Weyl's denominator formula
:w(e^) = e^\prod_(1-e^)},
shows that the Weyl character formula
:\operatorname(V)=w(e^) \over \sum_ (-1)^w(e^)}
can also be written as
:\operatorname(V)=w(e^) \over e^\prod_(1-e^)}.
This allows the multiplicities of finite-dimensional irreducible representations in Weyl's character formula to be written as a finite sum involving values of the Kostant partition function, as these are the coefficients of the power series expansion of the denominator of the right hand side.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kostant partition function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.